Курсовая работа Гидрогалогенирование icon

Курсовая работа Гидрогалогенирование



НазваниеКурсовая работа Гидрогалогенирование
Дата конвертации07.09.2012
Размер181.18 Kb.
ТипКурсовая



Курсовая работа

Гидрогалогенирование


Содержание

стр.

Введение 3

1. Общая характеристика процессов галогенирования 4

2. Техника безопасности в процессах галогенирования 9

3. Химия и технология процесса аддитивного галогенирования 10

Список литературы 16


Введение


Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья – выделение ценных веществ (сахар, масла) или их расщепление (мыло, спирт и др.). Органический синтез, т. е. получение более сложных веществ из сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали играть нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять групп исходных веществ для синтеза многих тысяч других соединений:

1. Парафины (от метана СН4 до углеводородов С15 – С40);

2. Олефины (С2Н4, С3Н6, С4Н8, С5Н10);

3. Ароматические углеводороды (бензол, толуол, ксилолы, нафталин);

4. Ацетилен;

5. Оксид углерода и синтез-газ (смесь СО и Н2).

В своем развитии промышленность органического синтеза разделилась на ряд отраслей (технология красителей, лекарственных веществ, пластических масс, химических волокон и др.), среди которых важное место занимает промышленность основного органического и нефтехимического синтеза. Термин «основной» (или «тяжелый») органический синтез охватывает производство многотонажных продуктов, служащих основой для всей остальной органической технологии. В свою очередь, термин «нефтехимический» синтез появился в связи с преобразованием технологии органических веществ на нефтяное сырье и в обычном смысле слова (исключая получение неорганических веществ и полимеров) охватывает первичную химическую переработку углеводородов нефтяного происхождения. В этом плане он является частью основного органического синтеза, чем и обусловлено их объединенное начало.


1. Общая характеристика процессов галогенирования


1. Галогенпроизводные получают тремя основными путями: за­мещением, присоединением и расщеплением.

Заместительное (субститутивное) галогенирование состоит в замещении на атомы галогена других атомов или групп.
Из них наибольшее значение имеет замещение атомов водорода

RH + CI2 → RCI + HCI

которое может происходить при насыщенных и ненасыщенных атомах углерода или в ароматическом ядре. Способность к заме­щению сохраняется у различных производных углеводородов.

Замещение одного атома галогена на другой имеет значение для получения фтор-, бром- и йодопроизводных из более доступных хлорорганических соединений:


CCI4 + 2HF → CCI2F2 + 2HCI


RCI + NaBr → RBr + NaCI


Замещение ОН- группы на атом галогена применяют для получения некоторых галогенопроизводных, а также хлорангидридов кислот:


ROH + HCI → RCI + H2O


RCOOH + COCI2 → RCOCI + CO2 + HCI


Присоединительное (аддитивное) галогенирование – присоединение галогенирующих агентов к ненасыщенным соединениям имеет столь же большое практическое значение, как замещение. Свободные галогены способны присоединяться по связям С=С, С≡С и Сарар:


CH2=CH2 + CI2 → CICH2-CH2CI


CH≡CH + 2CI2 → CHCI2-CHCI2


C6H6 + 3CI2 → C6H6CI6


Галогеноводороды присоединяются по двойной и тройной связям (гидрогалогенирование), а олефины вступают также в реакцию хлоргидрирования:


CH2=CH2 + HCI → CH3-CH2CI


CH≡CH + HCI → CH2=CHCI


CH2=CH2 + CI2 + H2O → CH2CI-CH2OH + HCI

Способность к перечисленным реакциям аддитивного галогенирования сохраняется у многих производных ненасыщенных углеводородов.

Особый случай аддитивного хлорирования представляет присоединение хлора по атомам, находящимся в низшем валентном состоянии, например синтез фосгена из оксида углерода и хлора:


CO + CI2 → COCI2


Реакции расщепления хлорпроизводных приобретают все более важное значение. Из них наиболее легко происходит дегидрохлорирование (1), обратное присоединению HCI. Из-за предпочтительности протекания этой реакции другие процессы расщепления наблюдаются только при высокой температуре у перхлорпроизводных. Это – дихлорирование (2), обратное присоединению CI2, и расщепление по углерод-углеродным связям, которое может происходить под действием хлора – хлоролиз (3), или хлоринолиз, или при повышенной температуре – пиролиз (4):


CH2CI-CH2CI CH2=CHCI + HCI


CCI3-CCI3 CCI2=CCI2 + CI2


CCI3-CCI3 + CI2 2CCI4


CCI3-CCI2-CCI3 CCI4 + CCI2=CCI2


2. Термодинамика реакций галогенирования

Реакции галогенирования сильно различаются энергетическими характеристиками, что предопределяет их существенные особенности. Ниже сопоставлены тепловые эффекты реакций с участием фтора, хлора, брома и йода для идеального газообразного состояния веществ:







Как видно из приведенных данных, тепловой эффект уменьшается в ряду F2 > CI2 > Br2 > I2, причем особое место занимают реакции фторирования и йодирования. Первые сопровождаются очень большим выделением тепла, превышающим энергию разрыва связей С-С и С-Н. Если не принять особых мер, это приведет к глубокому разложению органического вещества. С другой стороны, йодирование протекает очень небольшим или даже отрицательным тепловым эффектом и, в отличие от реакций с фтором, хлором и бромом, является обратимым. Это наряду с низкой активностью йода как реагента заставляет получать йодопроизводные другими путями. Впрочем, они производятся в малых масштабах и не принадлежат к продуктам основного органического и нефтехимического синтеза.

Тепловые эффекты некоторых реакций с участием галогеноводородов при идеальном газообразном состоянии веществ таковы:

C2H4 + HF → C2H5F ()


C2H4 + HCI → C2H5CI ()


C2H4 + HBr → C2H5Br ()


C2H4 + HI → C2H5I ()


C2H5OH C2H5CI ()


Все эти реакции экзотермичны, причем для галогеноводородов различие меньше, чем для свободных галогенов. Важно, что все реакции с участием галогеноводородов обратимы.


3. Галогенирующие агенты

Наибольшее значение в качестве галогенирующих агентов имеют свободные галогены и безводные галогеноводороды. Их температуры кипения при атмосферном давлении приведены в таблице 1.


Таблица 1


Температура кипения галогенов и галогеноводородов при атмосферном давлении


Наименование

Температура

1

2

F2

- 188,0

CI2

- 34,6

Br2

58,8

HF

19,4



продолжение таблицы 1

1

2

HCI

- 83,7

HBr

- 67,0


Все они растворимы в органических жидкостях (Br2 > CI2 > F2 и HBr > HCI > HF), что весьма важно для проведения жидкофазных процессов галогенирования. Имеют резкий запах, раздражают слизистые оболочки глаз и дыхательных путей, а свободные галогены обладают, кроме того, удушающим действием. Особенно опасны фтор и фторид водорода, способные разъедать кожные покровы и костную ткань.

Хлор получают электролизом водных растворов NaCI (рассолы), когда одновременно образуются водород и электролитическая щелочь:


CI- 0,5CI2


H+ 0,5H2


Na+ + HO- → NaOH


Получаемый при этом хлор-газ имеет концентрацию ≈ 92 % CI2 и содержит примеси N2, O2 и CO. Их можно отделить путем сжижения хлора, испарение которого дает чистый продукт, часто более предпочтительный для процессов хлорирования.

Хлорид водорода получают высокотемпературным синтезом из водорода и хлора:


H2 + CI2 → 2HCI


Фтор производят электролизом расплава гидродифторида калия KHF2, а безводный фторид водорода – действием серной кислоты на плавиковый шпат:


F- 0,5F2


H+ 0,5H2


CaF2 + H2SO4 → CaSO4 + 2HF


Все галогенирующие агенты агрессивны по отношению к материалу аппаратуры, причем их корродирующее действие особенно возрастает в присутствии даже следов влаги. Поэтому в процессах фторирования для изготовления аппаратуры применяют медь или никель, а при хлорировании и бромировании защищают стальной корпус эмалями, свинцом или керамическими материалами, используют также специальные сорта сталей, графит, секло и для изготовления труб – свинец. Для снижения коррозии как галогенирующие, так и органические реагенты нужно подвергать осушке.


2. Техника безопасности в процессах галогенирования


Кроме общих вопросов, связанных с токсичностью и взрывоопасностью исходных веществ (углеводороды, оксид углерода), при галогенировании возникает и ряд специфических условий техники безопасности.

Не только галогенирующие агенты, но и получаемые галогенпроизводные часто обладают повышенной токсичностью. Они влияют на центральную нервную систему, оказывают угнетающее или наркотическое действие (хлороформ, хлораль), раздражают слизистые оболочки глаз и дыхательных путей (бензилхлорид, хлорацетон), а фосген оказывает удушающее действие. Вследствие этого при галогенировании предъявляются повышенные требования к герметичности оборудования и вентиляции цехов. На рабочих местах необходимы средства оказания первой помощи и противогазы.

Свободные галогены подобно кислороду и воздуху могут давать с углеводородами и оксидом углерода взрывоопасные смеси. Процесс их горения в атмосфере галогенов очень экзотермичен и при определенных концентрациях переходит во взрыв. Нижний и верхний пределы взрываемости для смесей низших парафинов и олефинов с хлором лежат в интервале от 5 до 60% (об.) углеводорода. Это предопределяет необходимость принятия специальных мер безопасности при смешении углеводородов с галогенами, особенно при высокотемпературных газовых реакциях. Но взрывоопасность этих производств еще более усиливается тем, что многие галогенопроизводные дают взрывоопасные смеси с воздухом. Так, пределы взрываемости в смесях с воздухом составляют (об.):


CH3CI – 7,6 ÷ 19,0


C2H5CI – 3,8 ÷ 15,4

C2H4CI2 – 6,2 ÷ 16,0


При увеличении числа атомов галогена в молекуле взрывоопасность соединения снижается, а тетрахлорид метана даже применяют для тушения пожаров.


3. Химия и технология процесса аддитивного галогенирования


1. Присоединение галогенов по С=С-связям

Раньше встречалось присоединение хлора к олефинам в газовой фазе, идущее по радикально-цепному механизму. Если при этом появляется жидкая фаза, то процесс резко ускоряется и протекает в растворе. Механизм реакции изменяется, что доказывается отсутствием влияния света и химических инициаторов. Пропуская исходные реагенты через жидкую фазу, которой обычно является продукт реакции, легко осуществить присоединение хлора или брома по двойной связи:


RCH=CH2 + X2 → RCHX-CH2X


Эта реакция протекает достаточно быстро даже при низких температурах, но ее ускоряют катализаторы типа апротонных кислот (FeCI3). Механизм процесса состоит в электрофильном присоединении с промежуточным образованием - и -комплексов:





Роль FeCI3 объясняют не только ускорением стадии перехода -комплекса в -комплекс, но также образованием комплекса CI → CI:FeCI3. Каталитическая реакция имеет первый порядок по олефину, CI2 и FeCI3, но на нее обычно накладывается и некаталитический процесс, имеющий по хлору более высокий порядок. Реакционная способность олефинов зависит от стабильности промежуточного катиона и изменяется следующим образом:


RCH=CH2 > CH2=CH2 > CH2=CHCI2


К присоединению хлора способен и ацетилен:


CH≡CH CHCI=CHCI CHCI2-CHCI2


Здесь также используется катализ с FeCI3, причем из-за высокой скорости второй стадии образование дихлорэтилена незначительно.

Во всех этих процессах протекают побочные реакции замещения водорода; в результате образуются высшие хлориды (трихлорэтан из этилена, пентахлорэтан из ацетилена и т. д.). Замещение должно иметь радикально-цепной механизм, причем зарождение цепи осуществляется уже при низкой температуре за счет взаимодействия хлора с олефином:

. .

CH2=CH2 + CI2 → CH2CI-CH2 + CI


Для подавления этого процесса можно снизить температуру, но более эффективно применять ингибиторы цепных реакций и катализаторы апроторного типа. Один из возможных ингибиторов, а именно кислород, уже содержится в электролитическом хлор-газе, который и используют во всех рассматриваемых процессах. Добавление катализаторов, ускоряя присоединение, способствует повышению селективности. В результате совместного действия кислорода и катализатора выход побочного продукта замещения при хлорировании этилена снижается с 10 до 0,5 – 2%.

Рассматриваемые реакции отличаются высокой селективностью и скоростью, поэтому исходные реагенты не обязательно должны быть чистыми. Так, нередко используют разбавленный хлор-газ, остающийся после сжижения хлора, или фракции олефинов, содержащие соответствующие парафины или инертные примеси. Однако осушка газов и здесь является обязательной.

Процесс осуществляют путем барботирования газообразных реагентов через жидкий продукт, в растворе которого и протекает взаимодействие. Раньше во избежание замещения старались поддерживать температуру возможно низкой (300С), но в этом случае теплоотвод лимитировал производительность реактора. Теперь проводят процесс более интенсивно – при 70 – 1000С, а для подавления замещения используют ингибирующее действие кислорода и катализатор. Последним служит специально приготовленный FeCI3 или чугунные брусочки, укладываемые в реакторе и образующие FeCI3 под действием хлора. Соотношение органического реагента и хлора берут в этом случае близким к стехиометрическому лишь с небольшим избытком олефина (≈ 5%), чтобы обеспечить полное исчерпание хлора.

Реакционные узлы для этих процессов бывают трех типов. В первом случае реакцию проводят в барботажной колонне (рис. 1) с выносным охлаждением и обратным холодильником, в котором из отходящего газа конденсируются унесенные пары продуктов.




Рис. 1 Реакционный узел с выносным охлаждением


Конденсат возвращают в реактор, а накапливающийся продукт выводят через боковой перелив и направляют на дальнейшую переработку. В случае хлорирования ацетилена при указанном способе подвода реагентов в колонне наблюдаются вспышки, поэтому хлор вводят в циркуляционный контур, получая предварительно его раствор в тетрахлорэтане, который затем реагирует с барботирующим ацетиленом.

При получении сравнительно летучего 1,2-дихлорэтана значительная часть выделяющегося тепла снимается обратным конденсатором. Более того, выносной холодильник можно вообще устранить и отводить тепло за счет испарения. Дальнейшим усовершенствованием явилась ликвидация бокового слива продукта и организация его вывода из системы после обратного конденсатора, когда остальной конденсат возвращают в колонну для поддержания нужной температуры и уровня жидкости (рис. 2). В этом случае катализатор не загрязняет продукта, а остается в колонне и работает длительное время при незначительном расходе на единицу количества продукта.



Рис. 2 Реакционный узел с отводом тепла за счет испарения


Наконец, нашли применение системы с совмещением хлорирования и ректификации (рис. 3). В куб колонны, выполняющий роль реактора, вводят этилен и хлор. В ректификационной части колонны отделяют 1,2-дихлорэтан от трихлорэтана, собирающегося в кубе, причем тепло реакции полезно используется для разделения продуктов.





Рис. 3 Реакционный узел с совмещением хлорирования и ректификации

Отходящий газ обрабатывают так же, как при жидкофазном радикально-цепном хлорировании, но с тем же отличием, что ввиду незначительного количества HCI его обычно поглощают водой, сбрасывая разбавленную соляную кислоту в канализацию. Лучше для снижения количества сточных вод получать более концентрированную кислоту и использовать ее для заводских нужд. Жидкие продукты реакции, если это необходимо, очищают от катализатора и подвергают ректификации.


2. Реакция хлоргидринирования

В отличие от реакции присоединения хлора по двойной связи в апротонных растворителях, при действии хлора на олефины в водной среде образуются хлоргидрины:


RCH=CH2 + CI2 + H2O → RCH(OH)-CH2CI + HCI


Хлорноватистая кислота в нейтральной среде реагирует с олефинами очень медленно, но процесс сильно ускоряется при повышении кислотности раствора. Это объясняется образованием гидратированного катиона хлора, который является сильным электрофильным агентом, способным присоединяться по двойной связи олефина, давая -комплекс и затем при взаимодействии с водой – хлоргидрин:

+

HOCI + H+ ↔ H2O ∙∙∙ CI+ CICH2-CH2 CICH2-CH2OH


Когда реакцию проводят с водным раствором хлора, образование катиона хлора мало вероятно. В этом случае электрофильным агентом, атакующим двойную связь, является молекула хлора:

+

CH2=CH2 CH2=CH2 CICH2-CH2 CICH2-CH2OH



CI→CI

Это подтверждается тем, что скорость реакции описывается простым уравнением второго порядка:





Реакционная способность олефинов изменяется в том же ряду, что и для реакций присоединения хлора:


RCH=CH2 > CH2=CH2 > CH2=CHCH2CI


При этом для гомологов этилена и их производных хлоргидринирование протекает таким образом, что хлор (подобно протону при присоединении кислот к олефинам) связывается преимущественно с наиболее гидрированным атомом углерода. Вследствие этого из пропилена образуется 1-хлорпропанол-2 CICH2CH(OH)CH3 с примесью изомерного 2-хлорпропанола-1 CH2(OH)CHCICH3.

За счет взаимодействия промежуточного -комплекса с накапливающимся в ходе реакции анионом хлора (из HCI) и хлоргидрином получаются два побочных продукта – дихлорид и дихлоридалкиловый эфир:


CICH2-CH2CI CICH2-CH2 (CICH2-CH2)2O


Эти побочные реакции являются последовательными по отношению к хлоргидринированию, поэтому селективность сильно зависит о концентрации анионов CI- и хлоргидрина в получаемом водном растворе. Эта зависимость, типичная для всех процессов хлоргидринирования, изображена на рис. 4. Видно, что удовлетворительный выход целевого продукта достигается лишь при получении разбавленных водных растворов хлоргидринов.





Рис. 4 Зависимость выхода хлоргидрина (1) и дихлорида (2) при хлоргидринировании этилена от концентрации хлоргидрина в растворе


Селективность зависит также от типа применяемого реактора, который выгоднее делать более близким к модели идеального вытеснения.

Существуют два метода хлоргидринирования. По первому (рис. 5) пропилен, и хлор барботируют через водный раствор продуктов, находящихся в пустотелой колонне, защищенной от коррозии керамическими плитками. В низ колонны подают также воду, за счет нагревания которой отводят выделяющееся тепло. Если в газах есть инертные примеси, снимают часть тепла за счет испарения при помощи обратного конденсатора. Вместе с водой испаряется и 1,2-дихлорпропан после очистки выпускают как товарный продукт. Раствор хлоргидрина сливается через боковой перелив; его нейтрализуют известняком, направляя на синтез пропиленоксида.




Рис. 5 Барботажная колонна с обратным конденсатором


Такой же способ применяют для получения дихлоргидрина глицерина, но аллилхлорид вводят в виде паров, разбавляя его газом-носителем. Аллилхлорид и хлор хорошо растворяются в органической фазе продуктов, где будет протекать присоединение хлора, поэтому для повышения селективности важно усиленное диспергирование смеси. При синтезе дихлоргидрина глицерина применяют и другой способ проведения реакции состоящий в предварительном приготовлении раствора хлорноватистой кислоты (pH 5) и последующем хлоргидринировании. Указанный раствор готовят, пропуская хлор через водный раствор карбоната или гидроксидов натрия и кальция:


CI2 + NaOH → HOCI + NaCI

Затем раствор смешивают с аллилхлоридом (в насосе) и прокачивают через трубчатый охлаждаемый реактор, возвращая часть смеси на циркуляцию (рис. 6). Выход хлоргидринов составляет 80 – 85%.





Рис. 6 Реакционный узел с получением раздельно гипохлорита и гидринированием в трубчатом реакторе с рециркуляцией


Список литературы


1. Габриэлян О. С., Остроумов И. Г. Химия. М., Дрофа, 2008;

2. Чичибабин А. Е. Основные начала органической химии. М., Госхимиздат, 1963. – 922 с.;

3. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. М., Химия. 1988. – 592 с.;

4. Паушкин Я. М., Адельсон С. В., Вишнякова Т. П. Технология нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон И. И. Технология основного органического синтеза. М., «Химия», 1968.




Похожие:

Курсовая работа Гидрогалогенирование iconКурсовая работа Курсовая- настоящее студенческое Курсовая- настоящее студенческое исследование. Назначение курсовой работы- выяснить насколько студент овладел

Курсовая работа Гидрогалогенирование iconКурсовая работа по дисциплине на тему

Курсовая работа Гидрогалогенирование iconКурсовая работа
Основные составляющие управленческой деятельности как факторы обеспечения ее эффективности
Курсовая работа Гидрогалогенирование iconКурсовая работа по дисциплине : "Вычислительные системы и телекоммуникации" На тему : "Автоматизация жилого дома" Работу

Курсовая работа Гидрогалогенирование iconКурсовая работа История средневековья
На путях в Каноссу и Иерусалим. (Борьба империи с папством и Крестовые походы) 27
Курсовая работа Гидрогалогенирование iconКурсовая работа
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования (фгбоу впо)
Курсовая работа Гидрогалогенирование iconКурсовая работа Алкилирование фенолов
Процессы алкилирования часто являются промежуточными стадиями в производстве мономеров, моющих веществ и т д
Курсовая работа Гидрогалогенирование iconКурсовая работа Алкилирование парафинов
Процессы алкилирования часто являются промежуточными стадиями в производстве мономеров, моющих веществ и т д
Курсовая работа Гидрогалогенирование iconКокорина Людмила Александровна Главный специалист качество образования; работа с одаренными детьми; государственная итоговая аттестация курсовая

Курсовая работа Гидрогалогенирование iconКурсовая работа Синтез аминов из хлорпроизводных
Процессы алкилирования часто являются промежуточными стадиями в производстве мономеров, моющих веществ и т д
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©lib.podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов