Реферат Аддитивное галогенирование с помощью свободных галогенов icon

Реферат Аддитивное галогенирование с помощью свободных галогенов



НазваниеРеферат Аддитивное галогенирование с помощью свободных галогенов
Дата конвертации07.09.2012
Размер181.16 Kb.
ТипРеферат



Реферат

Аддитивное галогенирование с помощью свободных галогенов


Содержание

стр.

Введение 3

1. Общая характеристика процессов галогенирования 4

2. Техника безопасности в процессах галогенирования 9

3. Химия и технология процесса аддитивного галогенирования 10

Список литературы 16


Введение


Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья – выделение ценных веществ (сахар, масла) или их расщепление (мыло, спирт и др.). Органический синтез, т. е. получение более сложных веществ из сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали играть нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять групп исходных веществ для синтеза многих тысяч других соединений:

1. Парафины (от метана СН4 до углеводородов С15 – С40);

2. Олефины (С2Н4, С3Н6, С4Н8, С5Н10);

3. Ароматические углеводороды (бензол, толуол, ксилолы, нафталин);

4. Ацетилен;

5. Оксид углерода и синтез-газ (смесь СО и Н2).

В своем развитии промышленность органического синтеза разделилась на ряд отраслей (технология красителей, лекарственных веществ, пластических масс, химических волокон и др.), среди которых важное место занимает промышленность основного органического и нефтехимического синтеза. Термин «основной» (или «тяжелый») органический синтез охватывает производство многотонажных продуктов, служащих основой для всей остальной органической технологии. В свою очередь, термин «нефтехимический» синтез появился в связи с преобразованием технологии органических веществ на нефтяное сырье и в обычном смысле слова (исключая получение неорганических веществ и полимеров) охватывает первичную химическую переработку углеводородов нефтяного происхождения. В этом плане он является частью основного органического синтеза, чем и обусловлено их объединенное начало.


1. Общая характеристика процессов галогенирования


1. Галогенпроизводные получают тремя основными путями: за­мещением, присоединением и расщеплением.

Заместительное (субститутивное) галогенирование состоит в замещении на атомы галогена других атомов или групп.
Из них наибольшее значение имеет замещение атомов водорода

RH + CI2 → RCI + HCI


которое может происходить при насыщенных и ненасыщенных атомах углерода или в ароматическом ядре. Способность к заме­щению сохраняется у различных производных углеводородов.

Замещение одного атома галогена на другой имеет значение для получения фтор-, бром- и йодопроизводных из более доступных хлорорганических соединений:


CCI4 + 2HF → CCI2F2 + 2HCI


RCI + NaBr → RBr + NaCI


Замещение ОН- группы на атом галогена применяют для получения некоторых галогенопроизводных, а также хлорангидридов кислот:


ROH + HCI → RCI + H2O


RCOOH + COCI2 → RCOCI + CO2 + HCI


Присоединительное (аддитивное) галогенирование – присоединение галогенирующих агентов к ненасыщенным соединениям имеет столь же большое практическое значение, как замещение. Свободные галогены способны присоединяться по связям С=С, С≡С и Сарар:


CH2=CH2 + CI2 → CICH2-CH2CI


CH≡CH + 2CI2 → CHCI2-CHCI2


C6H6 + 3CI2 → C6H6CI6


Галогеноводороды присоединяются по двойной и тройной связям (гидрогалогенирование), а олефины вступают также в реакцию хлоргидрирования:


CH2=CH2 + HCI → CH3-CH2CI


CH≡CH + HCI → CH2=CHCI


CH2=CH2 + CI2 + H2O → CH2CI-CH2OH + HCI

Способность к перечисленным реакциям аддитивного галогенирования сохраняется у многих производных ненасыщенных углеводородов.

Особый случай аддитивного хлорирования представляет присоединение хлора по атомам, находящимся в низшем валентном состоянии, например синтез фосгена из оксида углерода и хлора:


CO + CI2 → COCI2


Реакции расщепления хлорпроизводных приобретают все более важное значение. Из них наиболее легко происходит дегидрохлорирование (1), обратное присоединению HCI. Из-за предпочтительности протекания этой реакции другие процессы расщепления наблюдаются только при высокой температуре у перхлорпроизводных. Это – дихлорирование (2), обратное присоединению CI2, и расщепление по углерод-углеродным связям, которое может происходить под действием хлора – хлоролиз (3), или хлоринолиз, или при повышенной температуре – пиролиз (4):


CH2CI-CH2CI CH2=CHCI + HCI


CCI3-CCI3 CCI2=CCI2 + CI2


CCI3-CCI3 + CI2 2CCI4


CCI3-CCI2-CCI3 CCI4 + CCI2=CCI2


2. Термодинамика реакций галогенирования

Реакции галогенирования сильно различаются энергетическими характеристиками, что предопределяет их существенные особенности. Ниже сопоставлены тепловые эффекты реакций с участием фтора, хлора, брома и йода для идеального газообразного состояния веществ:







Как видно из приведенных данных, тепловой эффект уменьшается в ряду F2 > CI2 > Br2 > I2, причем особое место занимают реакции фторирования и йодирования. Первые сопровождаются очень большим выделением тепла, превышающим энергию разрыва связей С-С и С-Н. Если не принять особых мер, это приведет к глубокому разложению органического вещества. С другой стороны, йодирование протекает очень небольшим или даже отрицательным тепловым эффектом и, в отличие от реакций с фтором, хлором и бромом, является обратимым. Это наряду с низкой активностью йода как реагента заставляет получать йодопроизводные другими путями. Впрочем, они производятся в малых масштабах и не принадлежат к продуктам основного органического и нефтехимического синтеза.

Тепловые эффекты некоторых реакций с участием галогеноводородов при идеальном газообразном состоянии веществ таковы:

C2H4 + HF → C2H5F ()


C2H4 + HCI → C2H5CI ()


C2H4 + HBr → C2H5Br ()


C2H4 + HI → C2H5I ()


C2H5OH C2H5CI ()


Все эти реакции экзотермичны, причем для галогеноводородов различие меньше, чем для свободных галогенов. Важно, что все реакции с участием галогеноводородов обратимы.


3. Галогенирующие агенты

Наибольшее значение в качестве галогенирующих агентов имеют свободные галогены и безводные галогеноводороды. Их температуры кипения при атмосферном давлении приведены в таблице 1.


Таблица 1


Температура кипения галогенов и галогеноводородов при атмосферном давлении


Наименование

Температура

1

2

F2

- 188,0

CI2

- 34,6

Br2

58,8

HF

19,4



продолжение таблицы 1

1

2

HCI

- 83,7

HBr

- 67,0


Все они растворимы в органических жидкостях (Br2 > CI2 > F2 и HBr > HCI > HF), что весьма важно для проведения жидкофазных процессов галогенирования. Имеют резкий запах, раздражают слизистые оболочки глаз и дыхательных путей, а свободные галогены обладают, кроме того, удушающим действием. Особенно опасны фтор и фторид водорода, способные разъедать кожные покровы и костную ткань.

Хлор получают электролизом водных растворов NaCI (рассолы), когда одновременно образуются водород и электролитическая щелочь:


CI- 0,5CI2


H+ 0,5H2


Na+ + HO- → NaOH


Получаемый при этом хлор-газ имеет концентрацию ≈ 92 % CI2 и содержит примеси N2, O2 и CO. Их можно отделить путем сжижения хлора, испарение которого дает чистый продукт, часто более предпочтительный для процессов хлорирования.

Хлорид водорода получают высокотемпературным синтезом из водорода и хлора:


H2 + CI2 → 2HCI


Фтор производят электролизом расплава гидродифторида калия KHF2, а безводный фторид водорода – действием серной кислоты на плавиковый шпат:


F- 0,5F2


H+ 0,5H2


CaF2 + H2SO4 → CaSO4 + 2HF


Все галогенирующие агенты агрессивны по отношению к материалу аппаратуры, причем их корродирующее действие особенно возрастает в присутствии даже следов влаги. Поэтому в процессах фторирования для изготовления аппаратуры применяют медь или никель, а при хлорировании и бромировании защищают стальной корпус эмалями, свинцом или керамическими материалами, используют также специальные сорта сталей, графит, секло и для изготовления труб – свинец. Для снижения коррозии как галогенирующие, так и органические реагенты нужно подвергать осушке.


2. Техника безопасности в процессах галогенирования


Кроме общих вопросов, связанных с токсичностью и взрывоопасностью исходных веществ (углеводороды, оксид углерода), при галогенировании возникает и ряд специфических условий техники безопасности.

Не только галогенирующие агенты, но и получаемые галогенпроизводные часто обладают повышенной токсичностью. Они влияют на центральную нервную систему, оказывают угнетающее или наркотическое действие (хлороформ, хлораль), раздражают слизистые оболочки глаз и дыхательных путей (бензилхлорид, хлорацетон), а фосген оказывает удушающее действие. Вследствие этого при галогенировании предъявляются повышенные требования к герметичности оборудования и вентиляции цехов. На рабочих местах необходимы средства оказания первой помощи и противогазы.

Свободные галогены подобно кислороду и воздуху могут давать с углеводородами и оксидом углерода взрывоопасные смеси. Процесс их горения в атмосфере галогенов очень экзотермичен и при определенных концентрациях переходит во взрыв. Нижний и верхний пределы взрываемости для смесей низших парафинов и олефинов с хлором лежат в интервале от 5 до 60% (об.) углеводорода. Это предопределяет необходимость принятия специальных мер безопасности при смешении углеводородов с галогенами, особенно при высокотемпературных газовых реакциях. Но взрывоопасность этих производств еще более усиливается тем, что многие галогенопроизводные дают взрывоопасные смеси с воздухом. Так, пределы взрываемости в смесях с воздухом составляют (об.):

CH3CI – 7,6 ÷ 19,0


C2H5CI – 3,8 ÷ 15,4

C2H4CI2 – 6,2 ÷ 16,0


При увеличении числа атомов галогена в молекуле взрывоопасность соединения снижается, а тетрахлорид метана даже применяют для тушения пожаров.


3. Химия и технология процесса аддитивного галогенирования


1. Присоединение галогенов по С=С-связям

Раньше встречалось присоединение хлора к олефинам в газовой фазе, идущее по радикально-цепному механизму. Если при этом появляется жидкая фаза, то процесс резко ускоряется и протекает в растворе. Механизм реакции изменяется, что доказывается отсутствием влияния света и химических инициаторов. Пропуская исходные реагенты через жидкую фазу, которой обычно является продукт реакции, легко осуществить присоединение хлора или брома по двойной связи:


RCH=CH2 + X2 → RCHX-CH2X


Эта реакция протекает достаточно быстро даже при низких температурах, но ее ускоряют катализаторы типа апротонных кислот (FeCI3). Механизм процесса состоит в электрофильном присоединении с промежуточным образованием - и -комплексов:





Роль FeCI3 объясняют не только ускорением стадии перехода -комплекса в -комплекс, но также образованием комплекса CI → CI:FeCI3. Каталитическая реакция имеет первый порядок по олефину, CI2 и FeCI3, но на нее обычно накладывается и некаталитический процесс, имеющий по хлору более высокий порядок. Реакционная способность олефинов зависит от стабильности промежуточного катиона и изменяется следующим образом:


RCH=CH2 > CH2=CH2 > CH2=CHCI2


К присоединению хлора способен и ацетилен:


CH≡CH CHCI=CHCI CHCI2-CHCI2


Здесь также используется катализ с FeCI3, причем из-за высокой скорости второй стадии образование дихлорэтилена незначительно.

Во всех этих процессах протекают побочные реакции замещения водорода; в результате образуются высшие хлориды (трихлорэтан из этилена, пентахлорэтан из ацетилена и т. д.). Замещение должно иметь радикально-цепной механизм, причем зарождение цепи осуществляется уже при низкой температуре за счет взаимодействия хлора с олефином:

. .

CH2=CH2 + CI2 → CH2CI-CH2 + CI


Для подавления этого процесса можно снизить температуру, но более эффективно применять ингибиторы цепных реакций и катализаторы апроторного типа. Один из возможных ингибиторов, а именно кислород, уже содержится в электролитическом хлор-газе, который и используют во всех рассматриваемых процессах. Добавление катализаторов, ускоряя присоединение, способствует повышению селективности. В результате совместного действия кислорода и катализатора выход побочного продукта замещения при хлорировании этилена снижается с 10 до 0,5 – 2%.

Рассматриваемые реакции отличаются высокой селективностью и скоростью, поэтому исходные реагенты не обязательно должны быть чистыми. Так, нередко используют разбавленный хлор-газ, остающийся после сжижения хлора, или фракции олефинов, содержащие соответствующие парафины или инертные примеси. Однако осушка газов и здесь является обязательной.

Процесс осуществляют путем барботирования газообразных реагентов через жидкий продукт, в растворе которого и протекает взаимодействие. Раньше во избежание замещения старались поддерживать температуру возможно низкой (300С), но в этом случае теплоотвод лимитировал производительность реактора. Теперь проводят процесс более интенсивно – при 70 – 1000С, а для подавления замещения используют ингибирующее действие кислорода и катализатор. Последним служит специально приготовленный FeCI3 или чугунные брусочки, укладываемые в реакторе и образующие FeCI3 под действием хлора. Соотношение органического реагента и хлора берут в этом случае близким к стехиометрическому лишь с небольшим избытком олефина (≈ 5%), чтобы обеспечить полное исчерпание хлора.

Реакционные узлы для этих процессов бывают трех типов. В первом случае реакцию проводят в барботажной колонне (рис. 1) с выносным охлаждением и обратным холодильником, в котором из отходящего газа конденсируются унесенные пары продуктов.




Рис. 1 Реакционный узел с выносным охлаждением


Конденсат возвращают в реактор, а накапливающийся продукт выводят через боковой перелив и направляют на дальнейшую переработку. В случае хлорирования ацетилена при указанном способе подвода реагентов в колонне наблюдаются вспышки, поэтому хлор вводят в циркуляционный контур, получая предварительно его раствор в тетрахлорэтане, который затем реагирует с барботирующим ацетиленом.

При получении сравнительно летучего 1,2-дихлорэтана значительная часть выделяющегося тепла снимается обратным конденсатором. Более того, выносной холодильник можно вообще устранить и отводить тепло за счет испарения. Дальнейшим усовершенствованием явилась ликвидация бокового слива продукта и организация его вывода из системы после обратного конденсатора, когда остальной конденсат возвращают в колонну для поддержания нужной температуры и уровня жидкости (рис. 2). В этом случае катализатор не загрязняет продукта, а остается в колонне и работает длительное время при незначительном расходе на единицу количества продукта.



Рис. 2 Реакционный узел с отводом тепла за счет испарения


Наконец, нашли применение системы с совмещением хлорирования и ректификации (рис. 3). В куб колонны, выполняющий роль реактора, вводят этилен и хлор. В ректификационной части колонны отделяют 1,2-дихлорэтан от трихлорэтана, собирающегося в кубе, причем тепло реакции полезно используется для разделения продуктов.





Рис. 3 Реакционный узел с совмещением хлорирования и ректификации

Отходящий газ обрабатывают так же, как при жидкофазном радикально-цепном хлорировании, но с тем же отличием, что ввиду незначительного количества HCI его обычно поглощают водой, сбрасывая разбавленную соляную кислоту в канализацию. Лучше для снижения количества сточных вод получать более концентрированную кислоту и использовать ее для заводских нужд. Жидкие продукты реакции, если это необходимо, очищают от катализатора и подвергают ректификации.


2. Реакция хлоргидринирования

В отличие от реакции присоединения хлора по двойной связи в апротонных растворителях, при действии хлора на олефины в водной среде образуются хлоргидрины:


RCH=CH2 + CI2 + H2O → RCH(OH)-CH2CI + HCI


Хлорноватистая кислота в нейтральной среде реагирует с олефинами очень медленно, но процесс сильно ускоряется при повышении кислотности раствора. Это объясняется образованием гидратированного катиона хлора, который является сильным электрофильным агентом, способным присоединяться по двойной связи олефина, давая -комплекс и затем при взаимодействии с водой – хлоргидрин:

+

HOCI + H+ ↔ H2O ∙∙∙ CI+ CICH2-CH2 CICH2-CH2OH


Когда реакцию проводят с водным раствором хлора, образование катиона хлора мало вероятно. В этом случае электрофильным агентом, атакующим двойную связь, является молекула хлора:

+

CH2=CH2 CH2=CH2 CICH2-CH2 CICH2-CH2OH



CI→CI

Это подтверждается тем, что скорость реакции описывается простым уравнением второго порядка:





Реакционная способность олефинов изменяется в том же ряду, что и для реакций присоединения хлора:


RCH=CH2 > CH2=CH2 > CH2=CHCH2CI


При этом для гомологов этилена и их производных хлоргидринирование протекает таким образом, что хлор (подобно протону при присоединении кислот к олефинам) связывается преимущественно с наиболее гидрированным атомом углерода. Вследствие этого из пропилена образуется 1-хлорпропанол-2 CICH2CH(OH)CH3 с примесью изомерного 2-хлорпропанола-1 CH2(OH)CHCICH3.

За счет взаимодействия промежуточного -комплекса с накапливающимся в ходе реакции анионом хлора (из HCI) и хлоргидрином получаются два побочных продукта – дихлорид и дихлоридалкиловый эфир:


CICH2-CH2CI CICH2-CH2 (CICH2-CH2)2O


Эти побочные реакции являются последовательными по отношению к хлоргидринированию, поэтому селективность сильно зависит о концентрации анионов CI- и хлоргидрина в получаемом водном растворе. Эта зависимость, типичная для всех процессов хлоргидринирования, изображена на рис. 4. Видно, что удовлетворительный выход целевого продукта достигается лишь при получении разбавленных водных растворов хлоргидринов.





Рис. 4 Зависимость выхода хлоргидрина (1) и дихлорида (2) при хлоргидринировании этилена от концентрации хлоргидрина в растворе


Селективность зависит также от типа применяемого реактора, который выгоднее делать более близким к модели идеального вытеснения.

Существуют два метода хлоргидринирования. По первому (рис. 5) пропилен, и хлор барботируют через водный раствор продуктов, находящихся в пустотелой колонне, защищенной от коррозии керамическими плитками. В низ колонны подают также воду, за счет нагревания которой отводят выделяющееся тепло. Если в газах есть инертные примеси, снимают часть тепла за счет испарения при помощи обратного конденсатора. Вместе с водой испаряется и 1,2-дихлорпропан после очистки выпускают как товарный продукт. Раствор хлоргидрина сливается через боковой перелив; его нейтрализуют известняком, направляя на синтез пропиленоксида.




Рис. 5 Барботажная колонна с обратным конденсатором


Такой же способ применяют для получения дихлоргидрина глицерина, но аллилхлорид вводят в виде паров, разбавляя его газом-носителем. Аллилхлорид и хлор хорошо растворяются в органической фазе продуктов, где будет протекать присоединение хлора, поэтому для повышения селективности важно усиленное диспергирование смеси. При синтезе дихлоргидрина глицерина применяют и другой способ проведения реакции состоящий в предварительном приготовлении раствора хлорноватистой кислоты (pH 5) и последующем хлоргидринировании. Указанный раствор готовят, пропуская хлор через водный раствор карбоната или гидроксидов натрия и кальция:


CI2 + NaOH → HOCI + NaCI

Затем раствор смешивают с аллилхлоридом (в насосе) и прокачивают через трубчатый охлаждаемый реактор, возвращая часть смеси на циркуляцию (рис. 6). Выход хлоргидринов составляет 80 – 85%.





Рис. 6 Реакционный узел с получением раздельно гипохлорита и гидринированием в трубчатом реакторе с рециркуляцией


Список литературы


1. Габриэлян О. С., Остроумов И. Г. Химия. М., Дрофа, 2008;

2. Чичибабин А. Е. Основные начала органической химии. М., Госхимиздат, 1963. – 922 с.;

3. Лебедев Н. Н. Химия и технология основного органического и нефтехимического синтеза. М., Химия. 1988. – 592 с.;

4. Паушкин Я. М., Адельсон С. В., Вишнякова Т. П. Технология нефтехимического синтеза. М., 1973. – 448 с.;

5. Юкельсон И. И. Технология основного органического синтеза. М., «Химия», 1968.




Похожие:

Реферат Аддитивное галогенирование с помощью свободных галогенов iconРеферат Галогенирование кислород- и азотсодержащих соединений
В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия)...
Реферат Аддитивное галогенирование с помощью свободных галогенов iconПф-кв-лр 56 Изучение свободных гармонических колебаний
Цель работы Изучить характеристики свободных колебаний на примере колебаний пружинного маятника
Реферат Аддитивное галогенирование с помощью свободных галогенов iconI физико-химическая характеристика производства
Аддитивное хлорирование этилена в среде жидкого дихлорэтана наиболее широко распространено в химической промышленности
Реферат Аддитивное галогенирование с помощью свободных галогенов iconРеферат Введение реферат должен содержать основные сведения по данному вопросу в реферате речь идет о проблемном анализе вопроса

Реферат Аддитивное галогенирование с помощью свободных галогенов iconКак правильно написать реферат
Реферат является научной работой, а потому должен соответствовать строгим требованиям по структуре и оформлению. Он состоит из следующих...
Реферат Аддитивное галогенирование с помощью свободных галогенов iconПамятка исследователя Реферат и исследование
...
Реферат Аддитивное галогенирование с помощью свободных галогенов iconРеферат по информатике и икт по теме: " Информатизация общества."
Видеофильм создан с помощью стандартной программы Windows Movie Maker, находящейся в меню «Пуск», а также при помощи программы «Звукозапись»,...
Реферат Аддитивное галогенирование с помощью свободных галогенов iconРеферат на заказ! Готовые работы История История России (конец 19-нач 20 века) реферат
Готовая работа стоит значительно дешевле и Вы сможете получить её в течения 1 дня
Реферат Аддитивное галогенирование с помощью свободных галогенов iconРеферат как учебно-исследовательская работа
Термином «реферат» обозначаются разные виды работ: а доклад на определённую тему, включающий обзор соответствующих литературных и...
Реферат Аддитивное галогенирование с помощью свободных галогенов iconДокументи
1. /Реферат/osnovnoy text.docx
2. /Реферат/prilozhenie_1_9.doc
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©lib.podelise.ru 2000-2014
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы

Разработка сайта — Веб студия Адаманов